1,199 research outputs found

    CDSSs for CVD Risk Management: An Integrative Review

    Get PDF
    Cardiovascular disease (CVD) is a preventable disease affecting almost half of adults in the United States (U.S.) and can have significant negative outcomes such as stroke and myocardial infarction, which can be fatal. Utilizing clinical decision support systems (CDSSs) in the primary care and community health setting can improve primary prevention of CVD by supporting evidence-based decision making at the point of care. This integrative review synthesizes the most up-to-date literature on the use of clinical decision support (CDS) tools to support guideline-based management of CVD risk. Using Whittemore and Knafl’s framework for integrative reviews, a systematic search of CINAHL, Cochrane, and Medline and ancestry search yielded 492 results; 17 articles were included in the final review after applying inclusion and exclusion criteria. Evidence-based CDSSs for CVD prevention improved guideline-based initiation and intensification of pharmacological treatment, increased frequency and accuracy of CVD risk screening, and facilitated shared decision-making discussions with patients about CVD risk; however, they were not effective in promoting smoking cessation and only sometimes effective in improving blood pressure (BP) control. This integrative review supports future evidence-based practice projects implementing CDSSs designed to improve guideline-based primary prevention of CVD as an, albeit partial, solution to improving prevention of CVD in the U.S. and globally

    The effectiveness of nurse-led interventions for cancer symptom management 2000-2018: a systematic review and meta-analysis

    Get PDF
    Background Evidence for effectiveness of nurse-led interventions for cancer-related symptoms is of variable quality. This study aimed to identify, appraise and evaluate the nature and effectiveness of nurse-led interventions on symptoms for people with cancer. Methods A systematic review and meta-analysis. Ten major databases were searched (2000 to 2018, no language restrictions). Two reviewers applied a priori selection criteria; data extraction included design, population, cancer type, and cancer-related symptoms. Interventions and providers were profiled using TIDieR reporting guidelines, and content analysis of components. Methodological quality was assessed using Cochrane risk of bias. A meta-analysis was performed using mean and standardised mean differences with 95% confidence intervals. Overall certainty was assessed using GRADE. Results From 29193 records, 149 studies (n = 107286 participants) from 22 countries were eligible. Interventions included multiple components; education and psychological approaches dominated. Pooled meta-analyses found evidence of benefit for nurse-led interventions on measures of constipation (MD −4.54, 95% CI −8.08 to −0.99; 645 participants; 6 trials; I2 = 0%; P = 0.01); nausea and vomiting (MD −1.97, 95% CI −3.61 to −0.33; 957 participants; 8 trials; I 2 = 12%; P = 0.02) and fatigue (MD −4.63, 95% CI −7.97 to −1.30; 1208 participants; 11 trials; I2 = 34%; P = 0.007). Psychological morbidity (anxiety, depression, mood) also improved. However, few trials used consistent outcome measures, interventions were poorly defined, and certainty of evidence was low or very low. Conclusion Nurse-led interventions improve specific cancer-related symptoms, including psychological morbidity. Enhanced reporting and collaboration to develop a minimum core dataset would strengthen the quality of evidence

    Recommendations for the use of common outcome measures in pediatric traumatic brain injury research

    Get PDF
    This article addresses the need for age-relevant outcome measures for traumatic brain injury (TBI) research and summarizes the recommendations by the inter-agency Pediatric TBI Outcomes Workgroup. The Pediatric Workgroup\u27s recommendations address primary clinical research objectives including characterizing course of recovery from TBI, prediction of later outcome, measurement of treatment effects, and comparison of outcomes across studies. Consistent with other Common Data Elements (CDE) Workgroups, the Pediatric TBI Outcomes Workgroup adopted the standard three-tier system in its selection of measures. In the first tier, core measures included valid, robust, and widely applicable outcome measures with proven utility in pediatric TBI from each identified domain including academics, adaptive and daily living skills, family and environment, global outcome, health-related quality of life, infant and toddler measures, language and communication, neuropsychological impairment, physical functioning, psychiatric and psychological functioning, recovery of consciousness, social role participation and social competence, social cognition, and TBI-related symptoms. In the second tier, supplemental measures were recommended for consideration in TBI research focusing on specific topics or populations. In the third tier, emerging measures included important instruments currently under development, in the process of validation, or nearing the point of published findings that have significant potential to be superior to measures in the core and supplemental lists and may eventually replace them as evidence for their utility emerges

    Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    Get PDF
    So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype
    • …
    corecore